Схема ик паяльной станции. ИК паяльная станция своими руками v2

При выполнении реболлинга и пайки BGA микросхем рекомендуется использовать именно инфракрасные паяльные станции. Для них характерно избирательное тепловое воздействие: сначала нагреваются металлические элементы микросхемы и лишь потом неметаллические. Этот процесс напрямую связан с длинной волны (равной примерно 2-8мкм) и позволяет избежать механических повреждений компонентов, так как благодаря концентрации инфракрасного излучения в нужной точке обеспечивается равномерность нагрева и исключается перегрев. Современная ИК паяльная станция, купить которую на сегодняшний день не представляет особого труда, поможет справиться даже с самым сложным случаем пайки печатных плат.

Если вам необходимо качественное, надежное и современное решение для пайки BGA – рекомендуем Вам обратить внимание на инфракрасные паяльные станции, представленные в нашем интернет-магазине. Благодаря идеальному соотношению цены и производительности наши ИК паяльные станции пользуются высокой популярностью и являются экономически выгодным готовым решением для бережного ремонта, подходящим как для специалистов, так и для любителей.

В интернет-магазине «Суперайс» собраны как бюджетные варианты торговых марок YIHUA и Ly, так и более дорогие паяльно-ремонтные комплексы, такие как паяльные станции ACHI IR6500 и Dinghua DH-A01R.

Купить ИК паяльную станцию можно оптом и в розницу для своих предприятий, лабораторий и личных нужд! Заказ Вы можете оплатить при получении, и мы бесплатно доставим Вам ИК паяльную станцию в любой город России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Воронеж, Владивосток, Хабаровск, Краснодар, Брянск, Ростов-на-Дону, Нижний Новгород, Челябинск, Казань, Красноярск, Омск, Самара, Волгоград, Барнаул и в другие города!

Около двух лет назад я разместил статью . Данная статья вызвала интерес у многих радиолюбителей. Но к сожалению после повторения ИК паяльной станции не обошлось без замечаний в плане работы станции, которые я постарался устранить в данной версии станции:
- применены аналоговые усилители термопары AD8495 со встроенной компенсацией холодного спая, в следствие чего увеличена точность показания температуры
- проблема с выходом из строя транзисторов нижнего нагревателя решена при помощи симисторного регулятора мощности
- доработана прошивка (которая совместима с прошлой версией станции). После запуска термопрофиль начинает выполняться с той температуры, до которой преднагрета плата, что экономит много времени. Отдельная благодарность за корректировку и адаптацию прошивки под китайские дисплеи.
- добавлен вакуумный пинцет
- корпус паяльной станции полностью переработан. Конструкция станции получилась очень симпатичной, более устойчивой и надежной, на рабочем столе занимает меньше места. В одном корпусе совмещено все необходимое, - нижний нагреватель, верхний нагреватель, вакуумный пинцет и сам контроллер.

Описание конструкции

Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор PT100. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже.

Для безсвинцового припоя максимальная температура термопрофиля: - 8 термопрофиль - 225C о, 9 - 230C о, 10 - 235C о, 11 - 240C о, 12 - 245C о, 13 - 250C о, 14 - 255C о

Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптации контроллера для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

Контроллер начинает выполнять термопрофиль с той температура, до которой преднагрета плата. Это очень удобно, и позволяет оперативно перезапустить термопрофиль в случае, например, если была температура недостаточна для снятия чипа, то можно выбрать термопрофиль с температурой повыше, и тут же снять чип со второй попытки.

На схеме применен комбо силовой блок, состоящий из транзисторного ключа для верхнего нагревателя, и симисторного для нижнего нагревателя. Хотя, например можно использовать 2 транзисторных, или 2 симисторных ключа.

Я использовал 2 готовых модуля на AD8495 , купленных на Aliexpress. Правда модули нужно немного доработать. Смотрим фото ниже.

Не обращаем внимания на то, что модуль на втором фото повернут на 90 градусов. Пришлось развернуть, так как модули у меня упирались в силовой блок. Разъемы для термопар использованы заводские.

Тем, кто не планирует в дальнейшем использовать платиновый терморезистор, то часть схемы выделенную красной пунктирной линией можно не собирать.

Печатные платы силового блока и контроллера.

Для охлаждения силовых ключей я применил радиатор от видеокарты с активным охлаждением.

Далее на фото будет виден этап сборки паяльной станции, как конструктора. Все материалы куплены в крупном строймагазине. Передняя и задняя панель сделаны из стеклотекстолита, укрепленного алюминиевым уголком. Базальтовый картон служит в качестве теплоизоляционного материала. Нижний подогрев состоит из 9 галогенных ламп (1500вт 220-240в R7S 254мм) объединенных в 3 группы по 3 соединенных последовательно лампы.

Провод для 220В применен силиконовый, высокотемпературный.

Хороший вакуумный насос можно приобрести на Aliexpress за 400-500 рублей. Ориентир для поиска на фото ниже.

Изначально я планировал использовать паяльную станцию совместно и ИК стеклом над нижним нагревателем, что давало хорошие преимущества:
- красивый внешний вид
- плату (на стойках можно ложить прямо на стекло), как у станций Термопро
Но увы, недостатки оказались весомее:
- очень долгий нагрев (остывание) платы
- очень сильно разогревается корпус паяльной станции, к примеру без стекла корпус во время работы едва теплый. Так что от стекла пришлось отказаться.

С открученным штативом стекло легко вынимается, или вставляется в станцию. Так же вместо стекла можно вставить, например, сетку.

Внешний вид собранной станции.

Аксессуары, стойки, алюминиевый швеллер для стоек, ручка вакуумного пинцета, силиконовая трубка для пинцета, термопара.

Необходимые "ингредиенты" для изготовления ручки вакуумного пинцета. Использован смеситель от эпоксидного клея Момент в сдвоенном шприце. Алюминиевая трубка(в которой необходимо просверлить отверстие) и соединитель соответствующего диаметра для силиконовой трубки. Все вклеено в алюминиевую трубку эпоксидным клеем момент.

Настройка контроллера
Резистором R32 необходимо установить напряжение 5,12В на выходе U4. Резистором R28 настраиваем контрастность дисплея. Если не планируете использовать платиновый терморезистор, то настройка станции закончена.
Описание калибровки канала с платиновым терморезистором описано в статье первой версии станции.

Рекомендации
Верхний нагреватель необходимо устанавливать на высоте5-6 см от поверхности платы. Если в момент выполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса - понижаем мощность верхнего нагревателя(включаем станцию с нажатым энкодером и устанавливаем максимальную мощность верхнего нагревателя). Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA обязательно нужно накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим фото тепловых пятен ИК нагревателей ELSTEIN в статье первой версии станции).
В общем смотрим видео ниже.
Ниже вы можете скачать архив с печатной платой в формате LAY, исходным кодом, прошивкой.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Е1 Энкодер 1 В блокнот
U1, U2 Операционный усилитель AD8495 2 В блокнот
U3 Операционный усилитель

LM358

1 В блокнот
U4 Линейный регулятор

LM7805

1 В блокнот
U5 МК PIC 8-бит

PIC16F876A

1 В блокнот
U6 МК PIC 8-бит

PIC12F683

1 Допустима замена на PIC12F675, но не рекомендуется В блокнот
U7, U8 Оптопара

PC817

2 В блокнот
U9 Оптопара

MOC3052M

1 В блокнот
LCD1 LCD дисплей VC20x4C-GIY-C1 1 20x4 на основе KS0066 (HD44780) В блокнот
Q1 MOSFET-транзистор

TK20A60U

1 В блокнот
Z1 Кварц 16 МГц 1 В блокнот
VD1 Выпрямительный диод

LL4148

1 В блокнот
VD2 Диодный мост KBU1010 1 В блокнот
VD3 Стабилитрон 24В 1 В блокнот
VD4 Диодный мост

DB107

1 В блокнот
T1 Симистор BTA41-600B 1 В блокнот
R9 Платиновый терморезистор PT100 1 В блокнот
R2, R3, R6, R7, R26, R27 Резистор

10 кОм

6 В блокнот
R1, R5 Резистор

1 МОм

2 В блокнот
R4, R8 Резистор

100 кОм

2 В блокнот
R10, R11 Резистор

4.7 кОм

2 Допуск 1% или лучше В блокнот
R12 Резистор

51 Ом

1 В блокнот
R13, R32 Подстроечный резистор 100 Ом 2 Многооборотный В блокнот
R14, R15, R16, R17 Резистор

220 кОм

5 Допуск 1% или лучше В блокнот
R18 Резистор

1.5 кОм

1 В блокнот
R19 Подстроечный резистор 100 кОм 1 Многооборотный В блокнот
R20 Резистор

100 Ом

1 В блокнот
R21 Резистор

20 кОм

1 В блокнот
R22 Резистор

510 Ом

1 В блокнот
R23, R24 Резистор

47 кОм

2 Мощность 1Вт В блокнот
R25 Резистор

5.1 кОм

1 В блокнот
R28 Подстроечный резистор 10 кОм 1 Многооборотный В блокнот
R29 Резистор

16 Ом

1 Мощность 2Вт В блокнот
R30, R31 Резистор

2.7 кОм

2 В блокнот
R33 Резистор

2.2 кОм

1 В блокнот
R34 Резистор

100 кОм

1 Мощность 1Вт (возможно придется подобрать номинал при настройке детектора нуля) В блокнот
R35 Резистор

47 кОм

1 возможно придется подобрать номинал при настройке детектора нуля В блокнот
R36 Резистор

470 Ом

1 В блокнот
R37 Резистор

360 Ом

1 Мощность 1Вт В блокнот
R38 Резистор

330 Ом

1 Мощность 1Вт В блокнот
R39 Резистор

Инфракрасная паяльная станция представляет самое современное устройство для пайки сложных элементов. Инфракрасное излучение, за счет концентрации пучка излучения инфракрасного спектра, позволяет избежать механических повреждений и перегрева компонентов.

Паяльная станция (я ее назвал IR101, первое, что пришло в голову) предназначена для пайки BGA чипов, сложных микросхем (имеющих большое количество выводов и большую площадь интеграции), а так же в труднодоступных местах, с использованием свинцового и безсвинцового припоя (температурный диапазон пайки от 170 до 400 град С). Станция имеет как ручной режим пайки, так и автоматический. В каждый режим можно вносить корректировки до пайки и в момент выполнения.

Из чего состоит.

Станция состоит из платформы, с передвижным штативом, двумя нагревателями (верхний и нижний), блока управления, температурного датчика и регулируемой системой крепления плат.

Верхний нагреватель керамический, мощностью 450W, размещен в дюралевом корпусе. Корпус с верхним нагревателем вентилируется кулером, который так же отводит вредные испарения флюса от места пайки. Положение верхнего нагревателя меняется по высоте колесиком, расположенным на подвижном штативе.

Нижний нагреватель галогенный, мощностью 150W, размещен в стальном корпусе и защищен алюминиевой сеткой.

Датчик температуры закреплен на профиле от зажима плат, состоит из термопары и цифрового блока, для расчета температуры.

Блок управления состоит из платы управления, блока питания электронной части устройства, твердотелого реле (для управления верхним нагревателем), электромагнитного реле (для управления нижним подогревателем), светодиодов (для индикации работы нагревателей), защитного предохранителя (15А), дисплея и кнопок управления.

Паяльная станция IR101 самодельная, за основу конструкции взят старый фотоувелечитель. С фотоувеличителя снято все лишнее, изготовлена верхняя крышка из пластика и алюминиевая пластина для крепления верхнего нагревателя. Установлен кулер 12В. Нижний подогреватель изготовлен из галогенного прожектора и корпуса от блока питания компьютера. Стекло прожектора снято, вместо него установлена металлическая сетка. Верхний подогреватель керамический, используется в современных паяльных станциях. Система держателя плат выполнена из алюминиевых профилей и стержней, собранные на заклепки и винты.

Фиксация подвижных частей осуществляется винтами, взятыми с фоувеличителя. Поверх планок наклеены полоски из термостойкого силикона. Зажимы изготовлены из крокодилов, обтянутых силиконовыми трубками. Блок управления работает на микроконтроллере Atmega 328P. Термодатчик состоит из термопары типа «К» и контроллера MAX6675, для преобразования данных с термопары в цифровое значение.

Как работает.

Станция имеет два режима работы: автоматический (точнее полуавтоматический) и ручной. Автоматический режим используется в большинстве случаев при пайке BGA чипов или планарных микросхем. Ручной чаще необходим для выполнения особых задач (к примеру необходимо прогреть плату или конкретное место на плате с безсвинцовым припоем, для пайки элементов с помощью паяльника или термофена).

Главное меню

Автоматический режим .

Использует заранее настроенный профиль (можно записать 4 профиля), в котором задаются следующие параметры:

t1 (69-230 гр.С) – температура нижнего подогрева (температура прогрева платы перед пайкой). Необходим для уменьшения разности температур на поверхности платы, тем самым, исключая деформацию платы, при локальном нагреве верхнем нагревателем. Примечание: максимальное значение можно установить до 230гр. С, однако, прибор способен быстро и легко прогревать плату до 130гр, выше будет греть долго и может повредить плату в результате длительного нагрева.

T1 (1-20 мин) – время достижения температуры t1. За какое время нижний подогреватель выйдет на нужную температуру. Если выставлять больше, плата будет разогреваться плавно, что более предпочтительно. Слишком большое время нежелательно для некоторых деталей платы (например, электролитических конденсаторов).

t2 (170-400 гр.С) – температура верхнего подогрева (температура места пайки). Температура выбирается исходя из температуры плавления припоя, используемого на плате. Чаще подбирается практически, использую данные по режимам пайки конкретной платы, или опытным путем.

T2 (1-20 мин) – время выхода на температуру t2. За какое время верхний нагреватель нагреет место пайки. Большее время благоприятней для пайки, т.к. плавно и равномерно прогревает все контактные площадки. Слишком большое время может приводить к деградации паяемой детали, а так же деталей расположенных поблизости.

T3 (1-20 мин) – время остывания. За какое время плата остынет до 50гр С. Необходимо для более качественной пайки (исключает холодный спай), препятствует деформации платы.

Параметры устанавливаются в пункте «режим» (первый пункт главного меню). Кнопками «<», «>» устанавливается необходимое значение. Кнопка «Ввод» переходит к следующему значению. После установки всех параметров, программа предлагает сохранить настройки в один из 4 профилей. При нажатии кнопки «Назад», данные не сохраняются и программа возвращается в главное меню.

Запустить автоматический режим можно выбрав из главного меню пункт «Пуск».

После чего появится окно выбора профиля.

Выбрав профиль, нажимаем «Ввод», программа запускает режим пайки, который включает в себя 4 операции:

1) плавно прогревает плату снизу до нужной температуры,

2) плавно прогревает место пайки сверху до температуры пайки (нижний подогреватель продолжает работать),

3) переходит в режим пайки, в котором поддерживается необходимое время нужная температура, чтобы успеть выполнить операцию монтажа или демонтажа детали,

4) плавно остужает плату, использую только нижний подогреватель, для поддержания температуры.

В автоматическом режиме отображается на дисплее текущая операция, время с начала операции, фактическая температура. Два световых индикатора под дисплеем сигнализируют, о том, какой подогреватель работает в данный момент. Переход к следующей операции сопровождаются звуковым оповещением (если данная настройка включена в пункте «Настройки»).

Каждую операцию можно пропустить и перейти на следующую, не дожидаясь её окончания при помощи нажатия кнопки «Ввод» в течении 2 сек. При нажатии кнопки «Назад» в течении 2 сек, паяльная станция останавливает работу и переходит в главное меню.

Ручной режим.

Использует параметры, которые можно менять в реальном времени и содержит две операции (прогрев платы и прогрев места пайки). Перейти в него можно из главного меню режим «Ручная». После перехода на дисплее отобразиться текущая операция (нижний прогрев).

Кнопками «<», «>» можно установить необходимую температуру. Нажатие на кнопку «Ввод» переведет программу к следующей операции (верхний прогрев), оставляя нижний прогрев включенным, а нажатие «Назад» закончит пайку и выйдет в главное меню.

Во второй операции нажатие «Ввод» или «Назад» закончит пайку и выйдет в главное меню.

Настройки паяльной станции.

Для перехода к настройкам необходимо в главном меню выбрать пункт «Настройки».

Откроется меню настроек. Переход по пунктам осуществляется кнопками «<», «>». Изменение значений кнопкой «Ввод». Кнопка «Назад» сохраняет настройки и выходит в главное меню.

Теперь подробней о настройках:

«Гист» — устанавливает гитерезис. Отклонение от заданной температуры в градусах цельсия.

«Звук» — отключает/включает звуковые оповещения.

«Датчики» — устанавливает количество датчиков (данный прибор может брать значения с двух датчиков, устанавливаемых сверху и снизу платы).

«Пайка» — время операции пайки в автоматическом режиме (время поддержания постоянной температуры t2).

Заключение.

Вот и все, что касается работы прибора. Все настраиваемые значения позволяют работать как большинство современных профессиональных станций. Самое главное отличие, что контроль ведется без помощи компьютера. Посчитал это предпочтительней, так как станцию можно разместить где угодно и не зависеть от других устройств. Второй момент – в большинстве станций устанавливается не время набора температуры, а скорость ее роста. Абсолютно одно и тоже, но по мне удобней использовать именно время выхода на рабочую температуры (более понятней выйти на 200град за 5 мин, чем установить скорость набора 0,666 град/сек). В профессиональных станциях нижний подогреватель используется тоже керамический. Конечно он лучше, чем галогенный, но и дороже раз в 15 раз. А одной из главных целей создания устройства – сделать недорогое, выполняющее все необходимые задачи устройство. Так же в дорогих станциях установлены камеры, лазерные линейки, дополнительное освещение и т.д. Все это можно было без особых проблем и сюда добавить, но огромной пользы от них не будет, а цена поднимется значительно.

О том, как использовать данную станцию и опыт работы с ней можно ознакомиться в статье .

Самодельная станция с полноценным керамическим нижним подогревателем .

Если кого-то заинтересовала данная станция, могу недорого продать. По вопросам продажи и изготовления, пишите на почту ([email protected]) или оставляйте комментарий.

Объяснять, насколько необходима паяльная станция для работы и ремонта современного электронного оборудования, скорее всего, не стоит, только время тратить. К сожалению, даже самые бюджетные варианты подобного оборудования стоят немалые деньги, от 10 тыс. рублей и выше, поэтому для работы в домашних условиях приходится искать варианты изготовления паяльной станции своими руками. Дело это непростое, требующее терпения в отладке и настройке управляющей компоненты паяльной станции.

Варианты постройки паяльной станции

Среди всякого полезного и не очень набора информации, имеющегося в сети, можно отыскать массу схем и устройств самодельной разработки, вплоть до вариантов изготовления самодельных термопар и фенов. На практике, для перепайки и прогрева электронных компонентов материнских плат и видеокарт компьютеров, станций управления и прочей микропроцессорной техники чаще всего используют два типа установки:

  • Конструкция, работающая на принципе передачи тепла раскаленным воздухом. Собирается такая термовоздушная паяльная станция своими руками достаточно просто, но при одном условии, большую часть компонентов необходимо покупать готовыми, а не пытаться сделать кустарным способом;
  • Бесконтактная установка работает по принципу теплового излучателя. Инфракрасная паяльная станция своими руками собирается на основе мощных галогеновых ламп и системы отражателей. Для управления нагревом используются программные возможности ноутбука.

Самой крутой паяльной станцией, работоспособность которой подтверждена на практике, признана установка, изготовленная из отражательного зеркала и мощной галогеновой лампы на 500Вт.

К сведению! При правильной настройке такой паяльной станцией удалось выполнить пайку контактов твердым серебряным припоем.

Но для пайки или прогрева такой девайс будет смертельно опасен, потому что главным критерием при выборе варианта паяльной станции должна быть управляемость нагрева поверхности с точностью до 1 о С.

Строим воздушную паяльную станцию малой мощности

Конструкция паяльной станции состоит из четырех основных элементов:

  • Платы управления процессом нагрева;
  • Корпуса;
  • Блока питания;
  • Фена и паяльника.

Блок питания и корпус подбирают в соответствии с имеющимися ресурсами. Остальные узлы придется покупать или делать собственноручно.

Главный рабочий инструмент воздушной паяльной станции

Главным рабочим органом паяльной станции является фен с электрической спиралью и кулером, продувающий горячий воздух на поверхность пайки или микрочипа. Устройство его несложное, и при желании можно намотать нихровомовую спираль от обыкновенного низковольтного паяльника на керамическую трубку.

Нагревательный элемент изолируют несколькими слоями стеклоткани. Нихром не будет нагреваться до состояния раскаленного металла, но заизолировать поверхность необходимо хотя бы для того, чтобы металлическая поверхность не окислялась. На выходе из нагревательного устройства необходимо установить керамическое кольцо или сопло, диаметром 8-10 мм. Лучше всего подойдут термостойкие фишки, фиксирующие нагревательные спирали в старых утюгах. Мощность нагревателя для паяльной станции потребуется в пределах 400-500Вт, не менее.

Для организации наддува можно использовать кулер от компьютера, или взять за основу корпус с двигателем и вентилятором от походного фена. Но в этом случае придется разрабатывать свой вариант управления оборотами двигателя и напором воздушного потока.

Совет! Существует немало схем с ручным управлением, в которых подачу воздуха в нагревательный элемент предлагают организовать с помощью вынесенного компрессора.

Из практики можно сказать, что управление подачей воздуха паяльной станции должно быть только автоматическим, в противном случае включение-выключение клапана перепуска давления сделает процесс пайки настоящей мукой, а не работой.

Кроме того, в конструкции фена должна быть установлена термопара, с помощью которой, собственно, и регулируется температура воздуха.

Схему подключения фена можно выполнить так, как указано на рисунке ниже.

От того, насколько удобным и безопасным в работе получится конструкция фена, зависит качество пайки, поэтому, если у вас нет желания морочить голову самоделками, то можно купить обычный фен от настольной паяльной станции Luckey, модель702, и просто адаптировать ее к плате управления.

Система управления паяльной станцией

Из приведенного списка наиболее сложным узлом паяльной станции для постройки своими руками является плата управления. Ее можно купить готовой, но если есть опыт постройки подобных конструкций, схему вполне по силам собрать своими руками, комплект деталей можно заказать в сети.

Из всех существующих вариантов, доступных в онлайне, наиболее надежной и удобной в работе признана схемка на основе контролера ATMEGA серия 328р. Плата собрана на основе по приведенной ниже схеме.

Сборка выполняется на стеклотекстолитовой плате, и при нормальном качестве монтажа система управления паяльной станции запускается с первой попытки. При сборке платы потребуется крайне осторожно выполнять пайку элементов, особенно питающей цепи чипа, сделать землю и постараться не переусердствовать с нагревом ножек. Но, прежде всего, нужно будет программатором забить программный код управления. В качестве блока питания паяльной станции используется импульсник на 24В-6А со встроенной защитой от перегрузки.

В схеме управления паяльной станции используется пара мощных мосфетов IRFZ44N, нужно предпринять меры по защите от перегрева и выгорания. Если нагреватель фена получился чересчур мощным, вполне возможно срабатывание блокировки блока питания.

Симмистор и оптоэлектронную пару желательно вывести на отдельную плату, и обязательно установить радиатор охлаждения. Для оптопары рекомендуется использовать сравнительно маломощные светодиоды управления с максимальным током потребления до 20 миллиампер.

В конструкции паяльной станции используется пятипиновый паяльник мощностью в 50 Вт. Разработчики рекомендуют использовать Arrial 936, но можно установить любой аналогичный инструмент с предустановленной термопарой.

Сборка и регулировка работы станции

Все элементы монтируются в закрытый штамповый корпус от старого блока питания, на заднюю стенку выносится радиатор и включатель, на передней индикатор температуры.

Управление паяльной станцией осуществляется тремя переменными сопротивлениями на 10 кОм Первыми двумя регулируется температура паяльника и фена, третьим выставляются обороты фенового вентилятора.

Процесс регулировки касается только юстирования на плате паяльной станции температуры нагрева паяльника и фена. Для этого подключаем питание к паяльнику и термопарой с тестером измеряем реальную температуру нагрева жала. Далее подстроечным резистором выводим показание на цифровом индикаторе станции в соответствии с данными тестера. Аналогичным способом измеряем температуру воздушного потока фена и регулируем подстроечником показания на индикаторе. Если задрать обороты вентилятора фена, то место пайки можно легко разогреть до 450 о С.

Изготовление инфракрасного паяльника

Паяльные станции, работающие на инфракрасном излучении, за редким исключением, используются для прогрева распаявшегося процессора, моста или проца на видеокарте. Как известно, процессоры очень плохо переносят перегрев, и зачастую, при интенсивной нагрузке и плохом теплоотводе, происходит распаивание низкотемпературного припоя контактов от площадки.

Одним из варварских способов восстановления контакта является прогрев «тела» процессора дозированным тепловым излучение. Это можно сделать обычным феном или даже утюгом, но после подобных процедур положительный эффект достигается в одном из трех случаев. Поэтому специалисты-самодельщики предпочитают строить паяльные станции инфракрасного нагрева.

Изготовление корпуса и нагревательных элементов

Конструктивно паяльная станция состоит из четырех основных элементов:

  • Нижнего нагревательного блока;
  • Верхнего нагревательного блока;
  • Штатива и блока управления нагревателями.

Между верхним и нижним корпусом укладывается материнская плата компьютера так, чтобы инфракрасный поток от верхней системы нагрева был направлен преимущественно на цель — корпус процессора. Остальная часть платы закрывается от нагрева алюминиевой пластиной или фольгой с вырезанным окном под процессор.

Нижний корпус паяльной станции применяется для создания теплового экрана, проще говоря, для дополнительного подогрева платы, чтобы уменьшить потери тепла за счет конвекции воздуха.

Важно! Вся хитрость паяльной станции заключается в том, чтобы сделать нагрев не только эффективным, но и управляемым, то есть, нельзя допустить перегрева корпуса, поэтому в конструкции используется термопара и интерфейс управления галогенками.

В качестве нагревателей можно использовать обыкновенную нихромовую спираль, уложенную внутрь кварцевых трубок или галогенки R7S J254.

Для изготовления корпуса нижнего блока можно использовать любой подходящий по размеру стальной коробок, на который устанавливаются разъемы для ламп. В итоге, после сборки и подключения проводки получается конструкция паяльной станции, как на фото.

Аналогичным способом изготавливается верхний нагревательный блок.

Все устройство и управление монтируется на штативе от старого советского фотоувеличителя, у которого есть регулировка положения верхнего блока по высоте. Остается собрать систему управления паяльной установки.

Термопары и управление

Для того чтобы не допустить перегрева, в паяльной станции используются две термопары - для корпуса процессора и остальной поверхности материнской платы. Для управления паяльной станцией используется плата интерфейса Arduino MAX6635, которая подключается к последовательному порту домашнего ноутбука или ПК, для которого приходится искать соответствующее программное наполнение -обеспечение или сделать его самому.

Управление паяльной станции выполняется следующим образом. Компьютер через интерфейс и термопару получает информацию о температуре и меняет мощность теплового потока с помощью импульсов включения-выключения галогенок станции. По мере перегрева продолжительность периода горения лампы будет снижена, а при остывании, наоборот, увеличена.

В собранном виде паяльная станция выглядит, как на фото. Стоимость постройки обошлась чуть более 80 долл.

Заключение

Существует еще как минимум четыре варианта изготовления паяльной установки, в том числе один из них аккумуляторного типа. Какой из них наиболее удобный в управлении, можно установить только практическим способом, после постройки паяльника в натуральную величину. Две приведенные в статье схемы паяльной системы являются самыми простыми и доступными в изготовлении при весьма скромном бюджете в 150 дол.

Инфракрасная паяльная станция своими руками

Рано или поздно перед радиомехаником, занимающимся ремонтом современной электронной техники встаёт вопрос покупки инфракрасной паяльной станции. Необходимость назрела в связи с тем что современные элементы массово «откидывают копыта» короче говоря, производители как и мелочевки так и больших интегральных схем отказываются от гибких выводов в пользу пятачков. Процесс этот идёт уже достаточно давно.

Такие корпуса микросхем называются BGA - Ball grid array, проще говоря - массив шариков. Такие микросхемы монтируются и демонтируются бесконтактным способом пайки.

Раньше, для не особо крупных микросхем можно было обходиться термовоздушной паяльной станцией. А вот крупные графические контроллеры GPU термовоздушкой уже не снимешь и не посадишь. Разве что прогреть, но прогрев длительного результата не даёт.
В общем, ближе к теме. Готовые профессиональные инфракрасные станции имеют запредельные цены, а недорогие 1000 - 2000 зелёных недостаточный функционал, короче допиливать всё равно придётся. Лично по мне, инфракрасная паяльная станция - это тот инструмент, который можно собрать самому и под свои нужды. Да, не спорю, есть затраты по времени. Но если подойти к сборке ИК станции методично, то будет и необходимый результат и творческая удовлетворённость. Итак, я для себя наметил, что буду работать с платами размером 250×250 мм. Для пайки телевизионных Main и компьютерных видеоадаптеров, возможно планшетных ПК.

Итак, начал я с нечистого листа и дверцы от старой антресоли, прикрутив к этому будущему основанию 4 ножки от древней пишущей машинки.

Основа при помощи приблизительных расчётов получилась 400×390 мм. Дальше необходимо было примерно рассчитать компоновку исходя из размеров нагревателей, ПИД-регуляторов. Таким нехитрым «фломастерным» способом я определил высоту своей будущей инфракрасной паяльной станции и угол скоса передней панели:

Далее уже берёмся за скелет. Тут всё просто - изгибаем алюминиевые уголки согласно конструкции нашей будущей паяльной станции, закрепляем, связываем. Идём в гараж и с головой закапываемся в корпуса от DVD и видиков. Хорошо делаю, что не выбрасываю – знаю, что пригодятся. Глядишь, дом из них построю:) Вон из пивных банок строят, из пробок и даже палочек от мороженого!

Короче говоря, на облицовку лучше не придумаешь, чем крышки от аппаратуры. Листовой металл стоит не дёшево.

Бежим по магазинам в поисках антипригарного противня. Противень необходимо подобрать согласно размерам ИК-излучателей и их количеству. Я ходил по магазинам с небольшой рулеткой и измерял стороны дна и глубину. На вопросы продавцов типа - «Зачем вам пироги строго заданных размеров?» Отвечал, что неподходящие размеры пирога нарушают общую гармонию восприятия, что не соответствует моим моральным и этическим принципам.

Урааа! Первая посылочка, а в ней особо важные запчастюлины: ПИД-ы (страшное слово-то какое) Расшифровка тоже не простая: Пропорционально-Интегрально-Дифференциальный регулятор. В общем, разбираемся с их настройкой и работой.

Далее жестянка. Здесь как раз и пришлось попотеть с крышками от DVD-юков дабы всё получилось ровно и солидно, для себя делаем. После подгонки всех стенок необходимо вырезать нужные отверстия под ПИД-ы на передней, под кулер на задней стенке и в покраску - в гараж. В итоге - промежуточный вариант нашей ИК паяльной станции стал выглядеть таким образом:

После тестирования регулятора REX C-100 предназначенного для преднагрева (нижнего нагревателя) выяснилось, что он не совсем подходит для моей конструкции паяльной станции, потому как не рассчитан на работу с твердотельными реле, которыми он и должен управлять. Пришлось его доработать под свою концепцию.

Урааа! Пришла посылка из Китая. Теперь в ней уже было самое основное богатство для постройки нашей инфракрасной паяльной станции. А именно - это 3 нижних ИК излучателя 60×240 мм, верхний 80×80 мм. и пара твердотельных реле на 40А Можно было и на 25 ампер взять, но всегда стараюсь всё сделать с запасом, да и ценой они не сильно отличались.

Глаза боятся, а руки делают. Стараюсь не забывать эту старую истину, также как и про курицу, та что по зёрнышку. Что имеем в итоге - После установки излучателей в противень, установки твердотелок на радиатор, обдуваемый кулером и соединении всего, получилось уже что-то более-менее похожее на инфракрасную паяльную станцию.

Когда дело с преднагревом начало подходить к концу и были сделаны первые тесты на нагрев, удержание температуры и гистерезис, можно было смело приступать к верхнему инфракрасному излучателю. Работы с ним оказалось больше, чем я предполагал изначально. Было рассмотрено несколько конструктивных решений, но всё же более удачным на практике оказался последний вариант, который я и воплотил.

Сделать столик для удержания платы - очередная задача, требующая нагрева черепной коробки. Необходимо чтобы выполнялось несколько условий - равномерное удержание печатной платы, чтобы плата при нагреве не прогибалась. Кроме этого была возможность сдвигать влево-вправо уже зажатую плату. Зажим платы должен быть, как и крепкий, так и давать небольшую слабину, так как плата при нагреве расширяется. Ну и так же у столика должна быть возможность закрепить платы разных размеров. Не до конца еще доделанный столик: (нет прищепок для платы)

Вот и настало время тестов, отладок, подгонки термопрофилей под разные виды микросхем, и паяльных сплавов. За осень 2014 было восстановлено приличное количество компьютерных видеокарт и телевизионных Main-board

Не смотря на то, что паяльная станция кажется завершённой и прекрасно себя зарекомендовала, на самом деле не хватает еще нескольких важных вещей: Во-первых это лампа, ну или фонарик на гибкой ножке, Во-вторых обдув платы после пайки, в-третьих я хотел изначально сделать селектор для нижних нагревателей. Есть еще одна сумасшедшая задумка))) О ней пока распространяться не буду.…как только реализую, обязательно продемонстрирую это дело.

Конечно же, я написал не всё что хотел, потому как, при сборке было много мелочей, проблем и тупиков. Но зато я записал на весь процесс конструирования с самого начала и надеюсь, скоро будет конец. Просто работу над станцией пришлось отставить в связи с работой над видеокурсом «Ремонт ЖК телевизоров и мониторов»

Изначально я планировал добавить эти уроки в курс по телевизорам, но сам курс по телевизорам получился большим, да и по паяльной станции видеоуроков получилось на 6 Гб. + нужно сделать уроки по пайке BGA и по ремонту видеоплат. Веду к тому, что по сборке инфракрасной паяльной станции своими руками будет отдельный самостоятельный курс. Который можно будет ждать весной. А я пока буду заканчивать курс по телевизорам. осталось совсем маленько.

P.S. Паяльной станции думаю можно дать имя, жду ваших предложений в комментариях.

Очень интересная конструкция. Кое-какие идеи уже присмотрел для своей будущей ИК паялки. Спасибо.

Но у меня осталась ещё несколько вопросов:

1) Подскажи мощности верхнего и нижнего нагревателей?

2) Хватает ли этого для бессвинцовой пайки?

3) На каком расстоянии от нижнего подогрева оптимальнее всего располагать паяемую плату?

4) От куда ПИД для нижнего подогрева берёт данные о температуре? Понятно, что с термопары, но с какой? Каким-то образом с той же, что и ПИД для верха или с отдельной. Если с одной, то каким образом её одну подключить к двум ПИДам сразу? Если с двух, то где она устанавливается и как осуществляется её контакт с платой снизу?

автору большое спасибо за полезную статью,такой вопрос как Вы соединяли ети 3 нижних нагревателя, и можно ли схемку на низ как Вы ето все завязали?(вот почта )

молодцом, круто получилось, тоже очень интересно как подключили нижний подогрев, и Altec PC410 как его подключать? кроме 2х пидов 2х реле, еще что-то нужно, и Вы говорили, что пнределывали с100 что там переделывали, если можно на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. спасибо

http://a-golubev.ru

Интернет