Запуск трехфазного мощного электродвигателя от однофазной сети. Как подключить трехфазный двигатель в однофазную сеть своими руками

Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий.

Использование трехфазного асинхронного электродвигателя самостоятельно

Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на 380, к сети в 220 Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия (КПД), сохранить эффективность и работоспособность агрегата.

Особенности устройства двигателя

На каждом двигателе есть пластина или шильдик, где указаны технические данные и схема скрутки обмоток. Символ Y обозначает соединение звездой, а ∆ – треугольником. Помимо этого, на пластине обозначено напряжение сети, для которого предназначен электродвигатель. Разводка для подсоединения к сети находится на клеммнике, куда выводят провода обмотки.

Для обозначения начала и конца обмотки используют буквы С или U, V, W. Первое обозначение было в практике раньше, а английские буквы стали применять после введения ГОСТа.

Не всегда использовать для работы двигатель, предназначенный для трехфазной сети, представляется возможным. Если на клеммник выведено 3 вывода, а не 6 как обычно, то подключение возможно только с напряжением, которое указано в инженерных характеристиках. В этих агрегатах соединение треугольником или звездой уже сделано внутри самого прибора. Поэтому использовать электродвигатель на 380 Вольт с 3 выводами для однофазной системы невозможно.

Можно частично разобрать двигатель и переделать 3 вывода на 6, но это сделать не так просто.

Существует разные схемы того, как лучше подключать приборы с параметрами в 380 Вольт в однофазную сеть. Чтобы использовать трехфазный электродвигатель в сети 220 Вольт, проще воспользоваться одним из 2 способов подключения: «звезда» или «треугольник». Хотя можно осуществить запуск трехфазного двигателя с 220 без конденсаторов. Рассмотрим все варианты.

На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно воспользоваться фазосдвигающими конденсаторами, которые ещё называют пусковыми (Спуск.) и рабочими (Сраб.).

Тип подключения “Звезда”

При подключении звездой все три конца обмотки соединяются. Для этого используют специальную перемычку. Питание подается на клеммы с начала обмоток. При этом начало обмотки С1(U1) через параллельно подключенные конденсаторы поступает на начало обмотки С3(U3). Далее этот конец и С2(U2) надо подключить к сети.

В этом виде подключения, как и в первом примере, используются конденсаторы. Для того чтобы подключить по этой схеме скрутки потребуются 3 перемычки. Они будут соединять начало и конец обмотки. Выводы, идущие с начала обмотки С6С1 через такую же параллельную схему, как и в случае с подключением «звезда», соединяются с выводом, идущим от С3С5. Затем полученный конец и вывод С2С4 следует подключить к сети.

Тип подключения “Треугольник”

Если на шильдике указаны показатели 380/220ВВ, то подключение в сеть возможно только по «треугольнику».

Как подсчитать емкость

Для рабочего конденсатора применяется формула:

Сраб.=2780хI/U, где
U – номинальное напряжение,
I – ток.

Существует и другая формула:

Сраб.= 66хР, где Р – это мощность трехфазного электродвигателя.

Получается, что 7мкФ емкости конденсатора рассчитаны на 100Вт его мощности.

Значение для емкости пускового устройства должно быть на 2,5-3 порядка больше рабочего. Такое расхождение показателей по емкости у конденсаторов требуется, потому что пусковой элемент включается при работе трехфазного двигателя на непродолжительное время. К тому же при включении высшая нагрузка на него значительно больше, оставлять в рабочем положении это устройство на более длительный период не стоит, иначе из-за перекоса тока по фазам через некоторое время электродвигатель начнет перегреваться.

Если вы используете для работы электродвигатель, мощность которого меньше 1кВт, то пусковой элемент не потребуется.

Иногда емкости одного конденсатора для начала работы не хватает, тогда схема подбирается из нескольких разных элементов, соединенных последовательно. Общую емкость при параллельном соединении можно рассчитать по формуле:

Cобщ=C1+C1+…+Сn.

На схеме подобное подключение выглядит следующим образом:

О том, насколько правильно подобраны емкости конденсаторов, можно будет понять только в процессе использования. Из-за этого схема из нескольких элементов более оправдана, ведь при большей емкости двигатель будет перегреваться, а при меньшей – выходная мощность не достигнет нужного уровня. Подбор емкости лучше начать с минимального ее значения и постепенно доводить до оптимального. При этом можно замерить ток с помощью токоизмерительных щипцов, тогда подобрать оптимальный вариант станет проще. Подобный замер делают в рабочем режиме трехфазного электродвигателя.

Какие выбрать конденсаторы

Для подключения электродвигателя чаще всего используют бумажные конденсаторы (МБГО, КБП или МПГО), но все они обладают небольшими емкостными характеристиками и достаточной громоздкостью. Другой вариант – подобрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы. К тому же при пробое диода, а это случается довольно часто, через конденсатор начнет поступать переменный ток, что может привести к взрыву.

Кроме емкости, стоит обратить внимание на рабочее напряжение в домашней сети. При этом следует подбирать модели с техническими показателями не меньше 300Вт. Для бумажных конденсаторов подсчет рабочего напряжения для сети немного другой, и рабочее напряжение у данного типа устройств должно быть выше 330-440ВВ.

Пример подключения в сеть

Посмотрим, как это подключение рассчитывается на примере двигателя со следующими характеристиками на шильдике.

Характеристики двигателя

Итак, возьмем трехфазный асинхронный двигатель со схемой соединения для сети в 220 Вольт «треугольником» и «звездой» для 380 Вольт.

В данном случае мощность взятого для примера электродвигателя составляет 0,25 kW, что значительно меньше 1 kW, пусковой конденсатор не потребуется, а общая схема будет выглядеть следующим образом.

Для подключения в сеть необходимо найти емкость рабочего конденсатора. Для этого стоит подставить значения в формулу:
Сраб.= 2780 2А/220В=25 мкФ.

Рабочее напряжение устройства выбирается выше показателя в 300 Вольт. Исходя из этих данных, сортируют соответствующие модели. Некоторые варианты можно найти в таблице:

Зависимость емкости и напряжения от типа конденсатора

Тип конденсатора Емкость, мкФ Номинальное напряжение, В
МБГ0 1
2
4
10
20
30
400, 500
160, 300, 400, 500
160, 300, 400
160, 300, 400, 500
160, 300, 400, 500
160, 300
МБГ4 1; 2; 4; 10; 0,5 250, 500
К73-2 1; 2; 3; 4; 6; 8; 10 400, 630
К75-12 1; 2; 3; 4; 5; 6; 8; 10 400
К75-12 1; 2; 3; 4; 5; 6; 8 630
К75-40 4; 5; 6; 8; 10; 40; 60; 80; 100 750

Подключение тиристорным ключом

Трехфазный электродвигатель, предназначенный для 380 Вольт, используют для однофазного напряжения, применяя тиристорный ключ. Для того чтобы запустить агрегат в таком режиме, потребуется вот эта схема:

Схема трехфазного электродвигателя для однофазного напряжения

В работе использованы:

  • транзисторы из серии VT1, VT2;
  • резисторы МЛТ;
  • кремниевые диффузионные диоды Д231
  • тиристоры серии КУ 202.

Все элементы рассчитаны на напряжение 300 Вольт и ток 10А.
Собирается тиристорный ключ, как и другие микросхемы, на плате.

Сделать такое устройство под силу всем, кто имеет начальные познания в создании микросхем. При мощности электродвигателя меньше 0,6-0,7kW при подключении в сеть нагрева тиристорного ключа не наблюдается, поэтому дополнительное охлаждение не потребуется.

Подобное подключение может показаться слишком сложным, но все зависит от того, какие у вас есть элементы, чтобы переделать двигатель из 380Вт в однофазный. Как видно, использовать трехфазный двигатель для 380 через однофазную сеть не так сложно, как это кажется на первый взгляд.

Подключение. Видео

Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого нужно.

Из всех видов электропривода наибольшее распространение получили . Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема - большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.

Что такое звезда и треугольник у электродвигателя

Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:

  • звезда;
  • треугольник.

Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:

Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.

В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода - то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.

Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного - 6 шпилек.

К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.

Таким образом, если вы установите перемычки на нижние контакты клеммника в линию - получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу - соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения - не нужно гнуть проволочки.

Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.

Подключение к трёхфазной сети

Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.

Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:

  • 380/220;
  • 660/380;
  • 220/127.

Причем большее напряжение для схемы подключения звездой, а меньшее - для треугольника.

Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.

Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: .

Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.

Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 - подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 - здесь нужен либо понижающий трансформатор, либо однофазный с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.

Самый худший вариант - это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника - переделывать в схему звезды.

С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В - подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».

Электродвигатели почти всегда подключаются через (или ). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.

Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» - двигатель остановится. QF-1 – это , который обесточивает и силовую цепь и цепь управления.

Если вам нужно чтобы вы нажали кнопку и вал начал вращаться - вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.

Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент - блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.

Принцип работы схемы:

Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.

На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).

Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».

После того как вы отпустите кнопку «ПУСК» - двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.

Это и называется «самоподхват».

Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.

Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) - используйте схему подключения трехфазного двигателя с реверсом.

Кстати эту схему часто называют «реверсивная схема пускателя».

Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 - то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло в силовой цепи.

Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 - нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».

И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.

Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.

Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.

В остальном работа схемы аналогична предыдущей.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.

Подключение к однофазной сети

Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.

Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через , можно сдвинуть фазу напряжения до -90˚ а с помощью на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: .

Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.

Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.

На схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.

Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск - зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.

Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) - нужно подключить и пусковой конденсатор.

Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши - «ПУСК» и «СТОП» (как на автоматах АП-50).

Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.

Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:

Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.

Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:

  1. Номинальное напряжение 3х220В - вам повезло, и используйте приведенные выше схемы.
  2. Номинальное напряжение 3х380В - вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!

Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема - потери мощности. Они могут достигать 40-50%.

Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.

Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Материалы

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это - единственный выход.

Напряжения и их соотношение

Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений - 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них - «рабочие лошадки», составляющие большинство электромашин на любом предприятии - асинхронные машины мощностью в 1 - 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазной сети может включаться двумя способами - с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.

Фазосдвигающие емкости

Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических обозначаемых на схемах латинской буквой С.

Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.

Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую - фаза, а на третью - некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.

Расчет величины емкостей

Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:

С = С ст + Ср, где:

С ст - стартовая дополнительная отключаемая после разбега емкость;

С р - рабочий конденсатор, обеспечивающий вращение.

Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:

I н = P / (3 х U), где:

U - напряжение, при подключении «звездой» - 220 В, а если «треугольник», то 380 В;

P - мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.

Итак, зависимости требуемой рабочей мощности вычисляются по формулам:

С р = Ср = 2800 I н / U - для «звезды»;

С р = 4800 I н / U - для «треугольника»;

Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения - микрофарады.

Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.

Почему нужна подгонка

Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, Главное - после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.

Составление батареи емкостей

Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:

Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая - от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Использование электролитов

Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет - и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:

R = (0,86 x U) / kI, где:

kI - величина тока при трехфазном подключении, А;

U - наши верные 220 Вольт.

Какие двигатели подойдут?

Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.

Двигатели с тремя фазами необходимы для различных самоделок: циркулярок, деревообрабатывающих, заточных и сверлильных станков. Проблемы с ним могут возникнуть, если сеть однофазная. В таком случае, существует несколько способов подключения двигателя к сети.

Способ 1. Подключение третьей обмотки через фазосдвигающий конденсатор

Среди различных способов запуска трехфазных двигателей в однофазных сетях, самый простой и эффективный - с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90°С, а между первой и второй фазами сдвиг незначителен, электромотор теряет мощность примерно на 40…50% при включении обмоток по схеме треугольника.

Чтобы электромотор с конденсаторным пуском работал нормально, емкость конденсатора должна меняться в зависимости от числа оборотов. На практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис.1).

При нажатии па кнопку SB1 (можно использовать кнопку от стиральной машины - пускатель ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда он наберет обороты, кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются замкнутыми. Их размыкают для остановки электродвигателя. Если SB 1.2 в кнопке не отходит, под него следует подложить шайбу так, чтобы он отходил. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:

С2=4800 I/U
где I -ток, потребляемый мотором, А;
U - напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:

где Р - мощность двигателя, Вт;
U - напряжение сети, В;
n- КПД;
cosψ - коэффициент мощности. Емкость пускового конденсатора С1 выбирают в 2…2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего применять конденсаторы марки МГБО, МБГП, МБГЧ с рабочим на­пряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который «стекает» оставшийся электрический заряд.

Реверсирование электромотора осуществляется путем переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1…4 и т.п.

При работе в режиме холостого хода по питаемой через конденсаторы обмотке протекает ток, па 20…40% превышающий поминальный. Поэтому если электромотор будет часто использоваться в недогруженном режиме или вхолостую, емкость конденсатора С2 следует уменьшить. Например, для включения двигателя мощностью 1,5 кВт можно использовать в качестве рабочего конденсатор емкостью 100 мкФ, пускового - 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.

Способ 2. Запуск двигателя с использованием оксидных конденсаторов

Если нет возможности приобрести бумажные конденсаторы, можно использовать оксидные (электролитические) в качестве пусковых» На рис.2 приведена схема замены бумажных конденсаторов на электролитические. Положительная полуволна переменного тока проходит через цепочку VD1C1, а отрицательная - через VD2C2, поэтому электролиты можно использовать с меньшим допустимым напряжением, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов необходимо напряжение 400 В и выше, то для электролита достаточно 300…350 В, потому что он пропускает только одну полуволну переменного тока, и следовательно, к нему прикладывается лишь половина действующего напряжения, а для надежности он должен выдержать амплитудное напряжение однофазной сети, т.е. примерно 300 В. Их расчет аналогичен расчету бумажных.

Схема включения такого двигателя с помощью электролитических конденсаторов приведена на рис.3. Подобрать нужное значение емкости бумажных и оксидных конденсаторов проще всего измерив, ток в точках а, в, с - токи должны быть равны при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 выбираются с обратным напряжением не менее 300 В и 1пр. мах=10А. При большей мощности двигателя диоды устанавливаются на теплоотводы по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор потечет переменный ток, в результате чего спустя некоторое время электролит может нагреться и разорваться. Электролитические конденсаторы в качестве рабочих применять нежелательно, поскольку длительное протекание через них больших токов приводит к их разогреванию и взрыву. Их лучше всего использовать в качестве пусковых.

Способ 3. Подключение пусковых конденсаторов с помощью токового реле

Если трехфазный электродвигатель используется при динамических (больших) нагрузках на вал, можно использовать схему подключения пусковых конденсаторов с помощью токового реле, которое позволяет в момент больших нагрузок на вал автоматически подключать и отключать пусковые конденсаторы (рис.3).

При подключении обмоток по схеме, приведенной на рис.4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют примерно 25%, поскольку обмотки А и В включены противофазно на полное напряжение 220 В, а напряжение вращения определяется включением обмотки С. Фазирование обмоток показано точками.

Способ 4. Резисторно-индуктивноемкостные преобразователи сети

Более практичны и удобны в работе с такими двигателями резисторно-индуктивноемкостные преобразователи сети с одной фазой 220 В в трехфазную, с токами в фазах до 4А и сдвигом напряжений в фазах около 120°. Такие устройства универсальны, монтируются в жес­тяном корпусе и позволяют под­ключать трехфазные электродвигатели мощностью до 2,5 кВт в однофазную сеть 220 В практически без потери мощности.

В преобразователе используется дроссель с воздушным зазором. Устройство дросселя показано на рис.6. При правильном подборе R, С и соотношения витков в секциях обмотки дросселя такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и степени нагрузки на вал. Вместо индуктивности дано индуктивное сопротивление XL, так как его проще измерить: обмотка дросселя крайними выводами через амперметр подключается к напряжению 100…220 В частотой 50 Гц параллельно с вольтметром. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен выдержи­вать напряжение не менее 250 В, С2 - не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при включении в цепь переменного тока должны иметь примерно двукратный запас по напряжению. Резистор R1 должен быть рассчитан на ток до ЗА, т.е. на мощность около 700 Вт (наматывается никелево-хромовой проволокой диаметром 1,3…1,5 мм на фарфоровой трубке с передвигающейся скобой, позволяющей получать нужное сопротивление для разных мощностей двигателя). Резистор должен быть защищен от перегрева, огражден от других элементов, токоведущих частей, от прикосновения людей. Металлическое шасси корпуса необходимо заземлить.

Сечение магнитопровода дросселя S=16…18cm2, диаметр провода d=l,3…1,5 мм, общее число витков W=600…700. Форма магнитопровода и марка стали - любые, главное - предусмотреть воздушный зазор (а следовательно, возможность менять индуктивное сопротивление), которое устанавливается винтами (рис.6). Для устранения сильного дребезжания дросселя между Ш-об-разными половинами магнитопровода прокладывается деревянный брусок и зажимается винтами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270…450 Вт. Вся обмотка дросселя выполняется в виде одной катушки с тремя секциями и четырьмя выводами. Если использовать сердечник с постоянным воздушным зазором, придется изготовить пробную катушку без промежуточных отводов, собрать дроссель с примерным зазором, включить в сеть и измерить XL. Затем для подгонки полученного значения к требуемому. XL нужно отмотать или домотать несколько витков. Выяснив необходимое число витков, мотают необходимую катушку, разделив каркас на секции в отношении W1:W2:W3=1:1:2. Так, если общее число витков равно 600, то Wl =W2= 150, a W3=300. Чтобы увеличить выходную мощность преобразователя и избежать при этом несимметрии напряжений, нужно изменить значения XL, Rl, Cl, С2, которые рассчитываются из тех соображений, что токи в фазах А, В и С должны быть равны при номинальной нагрузке на вал двигателя. В режимах недогрузки двигателя несимметрия напряжений фаз не опасна, если наибольший из токов фаз не превышает номинальный ток двигателя. Пересчет параметров преобразователя на другую мощность производится по формулам:

С1=80Р;
С2=40Р;
Rl = 140/P;
XL = 110/P,
W=600/ Р,
S=16P,
d=1,4P;

где P - мощность преобразователя в киловаттах, в то время как паспортная мощность двигателя - это его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно брать в среднем 75…80%.

Бывают ситуации, когда нужно подключить электроприбор не так, как записано в его паспорте. К примеру, часто требуется подключение трехфазного двигателя к однофазной сети, что, хотя и снижает его мощность, иногда бывает вполне оправданным. Существуют основные схемы включения таких электродвигателей, которые широко и успешно применяются на практике. Также есть и некоторые нюансы, помогающие решать неожиданные трудности, связанные с отсутствием тех или иных материалов.

Работа такого двигателя в однофазной сети

Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.

Работа трехфазного двигателя

Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.

Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.

Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.

Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.

Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.

Расчет конденсаторов

Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.

I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.

Емкость пускового конденсатора берется из расчета 2–3 Сраб.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:

По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.

Модели конденсаторов

Лучше всего использовать металлобумажные конденсаторы. Если нет подходящих по емкости, их набирают из нескольких элементов. Но что, если нет и металлобумажных? Допустимо ли использование электролитических?

Для рабочих конденсаторов – однозначно нет. Электролитические емкости полярные, то есть, они для постоянного тока, и при подключении важно соблюдать полярность. В сети переменного тока, или при неправильном соединении, они попросту взрываются, забрызгивая бумагой и электролитом все окружающее пространство.

Но есть и свои хитрости. Что делать, если есть только электролиты, а запустить электродвигатель нужно прямо здесь и сейчас? Самая простая схема для превращения полярного элемента в неполярный:

Соединять необходимо отрицательными выводами. При этом стоит помнить, что при таком соединении их суммарная емкость будет в два раза ниже (если значения одинаковые, то можно просто разделить на два).

Но в нашей цепи присутствуют большие токи, поэтому предпочтительнее использовать другое соединение:

Применяется встречно – параллельное соединение, следовательно, нужно правильно посчитать результирующую емкость. Диоды также выбираются по току и напряжению.

Если двигатель будет работать на мощном станке, тогда подойдут металлобумажные элементы. Для пусковой емкости используют электролиты, но здесь важно не передержать кнопку пуска.

Данные двигателя

На что стоит обратить внимание при включении в однофазную сеть 3ех фазных электродвигателей:

  • полезная мощность снижается до 70–80%,
  • при рабочих значениях 380/220,Ỵ/Δ, подключать на одну фазу нужно треугольником. При соединении звездой не будет максимальной мощности,
  • если на шильде указано только одно значение – 380В, звезда, тогда придется двигатель разбирать, чтобы сделать переключение на треугольник, что не совсем удобно. При возможности стоит поискать другой двигатель.

Реверс в однофазной сети

Чтобы сделать реверс такого двигателя, подключенного к однофазной сети, нужно пусковой конденсатор переключить на другую обмотку. Делать это необходимо при снятом напряжении питания, и включать его только после полной остановки ротора. Это самая простая схема реверсирования.

Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.

Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.

Интернет