Светодиодные светильники своими руками для дома. Да будет свет: делаем диодную лампу своими руками

LED-светильники находят широкое применение в организации бытового, уличного, промышленного освещения. Их важными достоинствами является экономичность, экологичность, неприхотливость в обслуживании.

Изготовленная светодиодная лампа своими руками обязательно найдет свое применение в вашем доме. Подробную инструкцию по изготовлению, как и схемы сборки вы найдете в представленной статье.

Основой светодиодной лампы является односторонний полупроводник, величина которого составляет несколько миллиметров. В нем происходит однонаправленное движение электронов, что позволяет преобразовывать переменный ток в постоянный.

Состоящему из нескольких слоев кристаллу светодиода свойственны два типа электропроводимости: положительно и отрицательно заряженных частиц.

Сторона, где содержится минимальное количество электронов, получила названия дырочной (p-тип), тогда как другая с большим количеством этих частиц именуется электронной (n-тип).

При столкновении элементов на p-n-переходе они сталкиваются, генерируя частицы света фотоны. Если в это время поддерживать систему в постоянном напряжении, светодиод будет излучать стабильный поток света. Этот эффект используется во всех конструкциях LED-ламп.

Четыре разновидности светодиодных устройств

В зависимости от размещения светодиодов подобные модели можно разделить на следующие категории:

  1. DIP . Кристалл скомпонован с двумя проводниками, над которыми находится увеличитель. Модификация получила широкое распространение при изготовлении вывесок и гирлянд.
  2. «Пиранья» . Приборы собирают аналогично предыдущему варианту, но предусматривают четыре вывода. Надежные и прочные конструкции чаще всего применяют для оснащения автомобилей.
  3. SMD . Кристалл размещается сверху, что значительно улучшает отведение тепла, а также помогает уменьшить габариты устройств.
  4. СОВ . В этом случае светодиод впаивается непосредственно в плату, что способствует увеличению интенсивности свечения и защите от перегрева.

Существенный недостаток COB-устройств - невозможность замены отдельных элементов, из-за чего приходится приобретать новый механизм из-за одного-единственного вышедшего из строя чипа.

В люстрах и других бытовых осветительных приборах обычно применяется конструкция SMD.

Устройство LED-ламп

Светодиодная лампа состоит из шести следующих частей:

  • светодиод;
  • цоколь;
  • драйвер;
  • рассеиватель;
  • радиатор.

Действующим элементом подобного прибора является светодиод, генерирующий поток световых волн.

Светодиодные приборы могут быть рассчитаны на различное напряжение. Наиболее востребованы небольшие изделия на 12-15 Вт и более крупные светильники на 50 ватт

Цоколь, который может иметь различный вид и размер, применяется и для других видов ламп – люминесцентных, галогенных, накаливания. В то же время некоторые LED-приборы, например, светодиодные ленты, могут обходиться без этой детали.

Важным элементом конструкции служит драйвер, преобразующий сетевое напряжение в ток, на которой работает кристалл.

От этого узла во многом зависит эффективная работа лампы, кроме того, качественный , имеющий хорошую гальваническую развязку, обеспечивает яркий постоянный световой поток без намека на моргание.

Обычный светодиод производит направленный пучок света. Чтобы изменить угол его распределения и обеспечить качественное освещение, используется рассеиватель. Еще одной функцией этого компонента является защита схемы от механических и природных воздействий.

Радиатор предназначен для отвода тепла, излишки которого могут повредить прибору. Надежная работа радиатора позволяет оптимизировать работу лампы и продлить ей жизнь.

Чем меньше эта деталь, тем большую тепловую нагрузку придется выдерживать светодиоду, что скажется на быстроте его выгорания.

Преимущество и недостатки самодельной лампы

Специализированные магазины предлагают большой выбор светодиодных аппаратов. Однако порой в ассортименте невозможно найти прибор, отвечающий необходимым параметрам. Кроме того, LED-приборы традиционно отличаются высокой стоимостью.

К недостаткам изделий следует отнести отсутствие гарантии от производителя. Кроме того, при небрежной сборке подобные устройства могут иметь непривлекательный внешний вид

Между тем, вполне возможно сэкономить средства и получить идеальную лампу, выполнив сборку самостоятельно. Сделать это несложно и достаточно будет элементарных технических знаний и практических умений.

Выполненное своими руками LED-устройство имеет ряд значительных преимуществ над приобретенным в магазине аналогом. Они отличаются экономичностью: при аккуратной сборке и использовании качественных деталей период эксплуатации достигает 100 тысяч часов.

Такие приборы показывают высокую степень энергоэффективности, которая определяется соотношением потребляемой мощности и яркости выработанного света. Наконец, их стоимость на порядок ниже, чем фабричных аналогов.

Проблемы самостоятельного изготовления

Главными вопросами, которые приходится решать при изготовлении LED-ламп, является перевод переменного электрического тока в пульсирующий и его выравнивание до постоянного. Помимо этого, предстоит ограничить силу электропотока 12 вольтами, что необходимо для питания диода.

Для самостоятельного создания светильника на светодиодах можно воспользоваться деталями, купленными в специализированных магазинах, или элементами из перегоревших приборов

Продумывая устройство, следует также решить ряд конструктивных задач, а именно:

  • как расположить схему и светодиоды;
  • как изолировать систему;
  • как обеспечить теплообмен в устройстве.

Перед сборкой желательно продумать все эти проблемы с учетом требований, которые предъявляются к самодельному источнику света.

Схемы светодиодных ламп

Прежде всего, следует выработать вариант сборки. Существует два основных способа, каждый из которых имеет собственные плюсы и минусы. Ниже мы рассмотрим их подробнее.

Вариант с диодным мостом

Схема включает четыре диода, которые подключаются разнонаправленно. Благодаря этому мост приобретает возможность трансформировать сетевой ток в 220 V в пульсирующий.

Происходит это следующим образом: при проходе по двум диодам синусоидальных полуволн, они изменяются, что вызывает потерю полярности.

При сборке к плюсовому выходу перед мостом подключается конденсатор; перед минусовой клеммой – сопротивление на 100 Ом. Еще один конденсатор устанавливается позади моста: он понадобится для сглаживания перепадов напряжения.

Изготовление светодиодного элемента

Наиболее простым способом создания LED светильника является выполнение источника света на основе сломанного светильника. Необходимо проверить работоспособность обнаруженных деталей, что можно сделать с помощью аккумулятора на 12 V.

Неисправные элементы нужно заменить. Для этого следует распаять контакты, убрав перегоревшие элементы, поставить на их место новые. При этом важно соблюдать чередование анодов и катодов, которые крепятся последовательно.

Если требуется поменять лишь 2-3 штуки чипа, достаточно просто припаять их на участки, где ранее находились вышедшие из строя компоненты.

При полной самостоятельной сборке нужно соединять в ряд по 10 диодов, соблюдая правила полярности. Несколько выполненных цепей припаиваются к проводам.

При изготовлении лампы можно воспользоваться платами со светодиодами, которые можно найти в перегоревших устройствах. Важно лишь проверить их работоспособность

При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя.

Приспособления для более мягкого света

Чтобы избежать мерцания, свойственного LED-светильникам, описанную выше схему можно дополнить несколькими деталями. Таким образом, она должна состоять из диодного моста, резисторов на 100 и 230 Ом, конденсаторов на 400 нФ и 10 мкФ.

Чтобы защитить устройство от перепадов напряжения в начале схемы помещается резистор в 100 Ом, за которым впаивается конденсатор 400 нФ, после него устанавливается диодный мост и еще один резистор на 230 Ом, за которым идет собранная цепочка светодиодов.

Приборы с резисторным сопротивлением

Подобная схема также вполне доступна начинающему мастеру. Для ее выполнения требуются два резистора 12k и две цепочки из одинакового числа светодиодов, которые припаиваются последовательно с учетом полярности. При этом одна полоса со стороны R1 подсоединяется катодом, а другая – с R2 – анодом.

Выполненные по этой схеме светильники имеют более мягкий свет, поскольку действующие элементы зажигаются по очереди, благодаря чему пульсация вспышек почти незаметна невооруженному глазу.

Материалы для изготовления самоделки

Помимо корпуса, для создания лампы потребуются и другие элементы. Это, прежде всего светодиоды, которые можно приобрести в виде LED-лент или отдельных элементов НК6. Сила тока каждой детали равна 100-120 мА; напряжение 3-3,3 V.

Сборка некоторых схем предполагает использование дополнительных звеньев, например, драйвера, поэтому набор компонентов для каждого конкретного случая рассматривается отдельно

Необходимы также выпрямительные диоды 1N4007 либо диодный мост, а также предохранители, обнаружить которые можно в цоколе старого прибора.

Понадобится и конденсатор, емкость и напряжение которого должны соответствовать используемой электросхеме и количеству использованных в ней LED-элементов.

Если не используется готовая плата, нужно подумать о каркасе, к которому крепятся светодиоды. Для его изготовления подойдет теплоустойчивый материал, не являющийся металлом и непроводящий электрический ток.

Как правило, подобную деталь выполняют из прочных пластиков или плотного картона. Для крепления светодиодных элементов к каркасу понадобятся жидкие гвозди или суперклей.

Собираем простую LED-лампу

Рассмотрим выполнение светильника в стандартном цоколе от люминесцентной лампы. Для этого нам придется несколько изменить приведенный выше список материалов.

В этом случае мы используем:

  • старый цоколь Е27;
  • светодиоды НК6;
  • драйвер RLD2-1;
  • кусок пластика или плотного картона;
  • суперклей;
  • электропроводку;
  • паяльник, плоскогубцы, ножницы.

Первоначально требуется разобрать светильник. У люминесцентных устройств подсоединение цоколя к пластинке с трубками осуществляется с помощью защелок. Важно обнаружить место крепежа и поддеть элементы отверткой, что позволит легко отсоединить патрон.

Процесс сборки самодельной светодиодной лампы простой. В корпус от старого прибора вставляется драйвер, поверх которого устанавливается плата со светодиодами

Разбирая прибор, нужно соблюдать предельную осторожность, чтобы не нанести вреда трубкам, внутри которых находится ядовитое вещество. Одновременно необходимо следить за целостностью электропроводки, подсоединенной к цоколю, а также сохранять детали, содержащиеся в нем.

Верхнюю часть с подсоединенными газоразрядными трубками мы используем для выполнения пластинки, необходимой для подсоединения светодиодов. Достаточно удалить трубчатые элементы, а в оставшиеся круглые отверстия закрепить LED-детали.

Для их надежного крепления лучше сделать дополнительную пластмассовую или картонную крышку, которая послужит для изолирования чипов.

В лампе будут применяться светодиоды НК6, каждый из которых состоит из 6 кристаллов с параллельным подключением. Они позволяют создать довольно яркий осветительный прибор при минимуме потребляемого электричества.

Для подключения каждого светодиода к крышке необходимо выполнить по два отверстия. Прокалывать их следует аккуратно в строгом соответствии схеме.

Пластиковая деталь позволяет прочно зафиксировать LED-элементы, тогда как использование картона требует дополнительного закрепления светодиодов к основанию при помощи жидких гвоздей либо суперклея.

Так как устройство рассчитано на применение шести светодиодов мощностью по 0,5 ватт каждый, в схеме нужно предусмотреть три параллельно подсоединенных элемента.

Эффектный светильник можно выполнить, используя светодиодную ленту. Этот элемент вставляется в трубку, применяющуюся для люминесцентного освещения

В конструкции, которая будет работать от электросети мощностью 220 В, нужно предусмотреть драйвер RLD2-1, который следует приобрести в магазине или выполнить самостоятельно.

Во избежание короткого замыкания перед началом сборки важно заизолировать драйвер и плату друг от друга, используя пластик или картон. Поскольку лампа почти не нагревается, не стоит беспокоиться о перегреве.

Подобрав все компоненты можно собрать конструкцию по схеме, а затем подключить ее к электросети, чтобы проверить свечение.

Устройство, работающее от стандартного патрона с питанием 220 В, имеет низкое энергопотребление и мощность равную 3 Ваттам. Последний показатель в 2-3 раза меньше, нежели у люминесцентных устройств и в 10 раз меньше, чем у ламп накаливания.

Хотя световой поток равен всего лишь 100-120 люменов, благодаря ослепительно белому цвету лампа кажется значительно ярче. Собранный светильник можно применять в качестве настольного либо для освещения компактного помещения, например, коридора или чулана.

Выводы и полезное видео по теме

В приведенном ниже видеоролике вы можете увидеть подробный рассказ специалиста о самостоятельной сборке LED-светильника:

Лампы на светодиодах, выполненные самостоятельно, обладают высокими техническими характеристиками. Они почти не уступают фабричным моделям по таким качествам, как прочность, надежность, долговечность.

Сборка подобных устройств доступна практически каждому: для успешного ее выполнения необходимо лишь строго следовать схемам и аккуратно выполнять все предписанные манипуляции.

Возможно вам уже приходилось собирать светодиодную лампу своими руками и вы можете дать ценный совет посетителям нашего сайта? Или после прочтения статьи появились вопросы? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Внимание! Данная конструкция не имеет гальванической развязки от высоковольтной сети переменного тока. Строго соблюдайте технику безопасности. При повторении конструкции Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

В статье рассмотрена конструкция светодиодной лампы с питанием от сети переменного тока с напряжением до 240 В и частотой 50/60 Гц. Данная лампа мне служит уже более двух лет и я хочу поделится с Вами этой конструкцией. Лампа имеет очень простую схему ограничения тока, что даёт возможность повторения конструкции начинающим радиолюбителям. Она имеет небольшую мощность и может применяться в качестве ночника или для подсветки помещения, где не нужна большая яркость свечения, но важен такой фактор, как низкое энергопотребление и долгий срок службы. Её можно повесить в подъезде или на лестничной площадке и не переживать о выключении или высоком расходе электричества - срок её службы практически ограничен сроком службы применённых светодиодов, так как данная лампа не имеет импульсного преобразователя, которые часто выходят из строя быстрее самих светодиодов, а радиоэлементы здесь подобраны таким образом, что не превышаются номинальные напряжения и рабочие токи как конденсаторов с диодами, так и самих светодиодов даже при максимальном допустимом напряжении и частоты в питающей электросети.

Лампа имеет следующие характеристики:

В лампе использованы трёхкристалльные светодиоды тёплого белого свечения типа smd5050:

При протекании номинального тока 20 мА на одном кристалле светодиода падает напряжение порядка 3,3 В. Это основные параметры для расчёта гасящего конденсатора для питания лампы.

Кристаллы всех девяти светодиодов соединены последовательно друг с другом и таким образом через каждый кристалл протекает одинаковый ток. Этим достигается одинаковое свечение и максимальный срок службы светодиодов и следовательно всей лампы. Схема соединения светодиодов показана на рисунке:

После спаивания получается вот такая светодиодная матрица:

Вот так это выглядит с лицевой стороны:

Представляю Вам принципиальную схему данной светодиодной лампы:

В лампе используется двухполупериодный выпрямитель на диодах D1-D4. Резистор R1 ограничивает бросок тока во время включения лампы. Конденсатор C2 является фильтрующим и сглаживает пульсации тока через светодиодную матрицу. Для данного случая его ёмкость в микрофарадах примерно можно рассчитать по формуле:

где I это ток через светодиодную матрицу в миллиамперах и U - падение напряжения на ней в вольтах. Не стоит гнаться за слишком большой ёмкостью этого конденсатора, так как токогасящий конденсатор играет роль ограничителя тока, а подключённая светодиодная матрица является стабилизатором напряжения.

В данном случае можно использовать конденсатор ёмкостью 2,2-4,7 мкФ. Параллельно ему установленный резистор R3 обеспечивает полную разрядку этого конденсатора после выключения питания. Резистор R2 играет ту же роль для токогасящего конденсатора C1. Теперь главный вопрос - как рассчитать ёмкость гасящего конденсатора? В интернете есть много формул и онлайн калькуляторов для этого, но все они занижали результат и давали более низкую ёмкость, что подтвердилось на практике. При использовании формул с различных сайтов и после применения онлайн калькуляторов в большинстве случаев получилась ёмкость 0,22 мкФ. При установке же конденсатора с данной ёмкостью и при замере протекающего через светодиодную матрицу тока был получен результат 12 мА при напряжении сети 240 В и частоты 50 Гц:

Тогда я пошёл более длинным путём и сначала рассчитал необходимое гасящее сопротивление, а затем вывел ёмкость гасящего конденсатора. За исходные данные мы имеем:

  • Напряжение питающей сети: 220 В. Возьмём максимально возможное - 240 В.
  • Частоту сети я взял в 60 Гц. При частоте в 50 Гц через матрицу будет протекать меньший ток и лампа будет светить менее ярче, но, зато будет запас.
  • Напряжение, падающее на светодиодной матрице составит 27*3,3=89,1 В, так как у нас 27 последовательно включённых светодиодных кристаллов и на каждом из них будет падать примерно 3,3 В. Округлим это значение до 90.
  • При максимальной частоте 60 Гц и напряжении в сети 240 В, протекающий через матрицу ток, не должен превышать 20 мА.

В расчётах используются действующие значения токов и напряжений. По закону Ома гасящее сопротивление должно составлять:

где U c - напряжение в сети (В)

U m - напряжение на светодиодной матрице (В)

I m - ток через матрицу (A).

Так как в качестве гасящего сопротивления мы используем конденсатор, то X c = R и по известной формуле для ёмкостного сопротивления:

вычисляем необходимую ёмкость конденсатора:

где f - частота питающей сети (Гц)

X c - необходимое ёмкостное сопротивление (Ом)

Напоминаю, что полученное в данном случае значение ёмкости конденсатора справедливо для частоты питающей сети 60 Гц. Для частоты же 50 Гц по расчётам получается значение 0,42 мкФ. Для проверки справедливости я временно поставил два параллельно соединённых конденсатора по 0,22 мкФ с получившейся суммарной ёмкостью в 0,44 мкФ и при замере протекающего через светодиодную матрицу тока было зафиксировано значение в 21 мА:

Но для меня была важна долговечность и универсальность и по расчёту на частоту 60 Гц с результатом необходимой ёмкости в 0,35 мкФ я взял близкий номинал с ёмкостью в 0,33 мкФ. Вам так же советую брать конденсатор немного меньшей ёмкости, чем расчётная, что бы не превышать допустимый ток используемых светодиодов.

Далее подставив формулу для расчёта сопротивления в формулу для определения ёмкости и сократив всё выражение я вывел универсальную формулу в которую, подставив исходные значения, можно вычислить необходимую ёмкость конденсатора для любого числа светодиодов в лампе и любого питающего напряжения:

Окончательная формула принимает следующий вид:

Где C - ёмкость гасящего конденсатора (мкФ)

I d - допустимый номинальный ток применяемого в лампе светодиода (мА)

f - частота питающей сети (Гц)

U c - напряжение питающей сети (В)

n - количество используемых светодиодов

U d - падение напряжения на одном светодиоде (В)

Может быть кому то будет лень производить эти расчёты, но по этой формуле можно определить ёмкость для любой светодиодной лампы с любым числом последовательно соединённых светодиодов любого цвета. Можно например сделать лампу из 16 красных светодиодов подставляя в формулу соответствующее красным светодиодам падение напряжения. Главное придерживаться разумных пределов, не превышать количество светодиодов с общим напряжением на матрице до напряжения питающей сети и не использовать слишком мощные светодиоды. Таким образом можно изготовить лампу с мощностью до 5-7 Вт. В противном случае может понадобиться конденсатор слишком большой ёмкости и могут возникнуть сильные пульсации тока.

Вернёмся к моей лампе и на фотографии ниже показаны радиоэлементы, которые я использовал:

У меня не нашлось конденсатора ёмкостью 0,33 мкФ и я поставил параллельно включённых два конденсатора с ёмкостью 0,22 и 0,1 мкФ. С такой ёмкостью протекающий через матрицу ток, будет немного меньше расчётного. Фильтрующий конденсатор в моём случае на напряжение 250 В, но я настоятельно рекомендую использовать конденсатор на напряжение от 400 В. Хотя падение напряжения на моей светодиодной матрице и не превышает 90 В, но в случае обрыва или перегорания хоты бы одного из светодиодов напряжение на фильтрующем конденсаторе достигнет амплитудного значения, а это более 330 В при действующем напряжении в питающей сети 240 В. (U a = 1,4U)

В качестве корпуса я использовал часть компактной энергосберегающей люминесцентной лампы вытащив из неё электронную начинку:

Плату я выполнил навесным монтажом и она с лёгкостью поместилась в указанный корпус:

Светодиодную матрицу я приклеил двойным скотчем к круглому куску гетинакса, который привинтил к корпусу двумя винтами с гайками:

Так же я сделал небольшой рефлектор, вырезав его из жестяной банки:

Я провёл реальные измерения при напряжении в питающей сети 240 В и частоте 50 Гц:

Постоянный ток через светодиодную матрицу принял значение 16 мА, что не превышает номинального тока используемых светодиодов:

Так же я разработал печатную плату под радиоэлементы в программе Sprint-Layout. Все детали поместились на площади 30Х30 мм. Вид данной печатной платы Вы можете видеть на рисунках:

Я предоставил эту печатную плату в форматах PDF, Gerber и Sprint-Layout. Вы свободно можете скачать указанные файлы. Хотя на схеме и указаны диоды КД105, но так как в настоящее время они являются редкостью, то печатная плата разведена под диоды 1N4007. Так же можно использовать другие выпрямительные диоды средней мощности на напряжение от 600 В и на ток в 1,5-2 раза больший тока потребления светодиодной матрицы. Дам рекомендацию на счёт сборки этой матрицы. Все светодиоды лицевой стороной я временно приклеил к малярному скотчу и спаял все выводы согласно схеме, после чего готовую матрицу со стороны выводов приклеил на двусторонний скотч и снял бумажный малярный скотч с лицевой стороны. Если у Вас будет возможность, я рекомендую расположить светодиоды на большем расстоянии друг от друга, так как они будут выделять тепло и от близкого расположения могут перегреваться и быстро деградировать.

Лично у меня эта лампа светит по семь часов в день уже третий год и пока не было никаких проблем. К статье прилагаю также таблицу Exsel с формулой для расчёта. В ней просто нужно подставить исходные значения и в результате получите необходимою ёмкость гасящего конденсатора. Всем ярких и долговечных лампочек. Оставляйте отзывы и делитесь статьёй, так как в интернете много неправильных формул и калькуляторов дающих неверный результат. Здесь же всё проверено опытом и подтверждено временем и реальными измерениями.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Конденсаторы
C1 Конденсатор 0.33 мкФ 400 В 1 В блокнот
C2 Электролитический конденсатор 3.3 мкФ 400 В 1 В блокнот
Резисторы
R1 Резистор

Светодиодная лампа, сделанная своими руками позволяет сэкономить на покупке осветительных приборов и усовершенствовать собственные навыки. Чем можно объяснить подобный интерес? Это обусловлено объективной экономичностью светодиодов. В условиях постоянно растущих цен на коммунальные услуги, попытка сэкономить на электричестве путем установки светодиодов через 220в полностью себя оправдывает.

Купить или сделать

Светодиодная лампа это оптимальное решение для освещения квартиры. Но как лучше поступить приобрести готовые лампы или сделать их своими руками?

В пользу самодельных лампочек из светодиодов говорит несколько фактов:

  • Это самый дешевый способ получить светодиодное освещение,
  • Схема сборки не сложная, что позволяет выполнить работу своими руками даже начинающему электрику,
  • При правильной самостоятельной сборке эффективность свечения не будет уступать фабричным устройствам,
  • Для работы самодельной светодиодной лампы потребуется напряжение 220 Вольт.

А в чем выигрывают покупные светодиодные лампы?

  1. Это гарантия качества изделия. Но только при условии, что вы покупаете продукцию проверенного производителя.
  2. Длительный срок службы, превосходящий обычные лампы накаливания в несколько раз.
  3. Эффективное световое излучение, обеспечивающее качественное освещение помещений.
  4. Гарантия от производителя. Некоторые фирмы позволяют вернуть деньги за лампочку или обменять светодиодное устройство на новое в случае возникновения неисправностей или обнаружения заводского брака.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Но не стоит забывать, что покупная лампочка обойдется значительно дороже, чем сделанная собственными силами.

Выбор всегда за вами. Если вы начинающий электрик и хотите самостоятельно сделать устройство полезное для дома, проблем возникнуть не должно. Мы расскажем, как можно сделать из светодиодов полноценную лампу, которая будет питаться от 220 Вольт.

Сборка конструкции

Хотя вариантов изготовления светодиодной лампы множество, мы рассмотрим пример с использованием старой люминесцентной лампочки. Они часто встречаются в домах и квартирах, потому проблем с поиском заготовки возникнуть не должно.

  1. Главные интересующие нас компоненты люминесцентной лампы это цоколь и отражатель. Тут располагаются объединенные в электросхему элементы. Они отвечают за включение лампочки. Потому разбирайте корпус очень аккуратно, дабы не повредить конструкцию. Иначе придется искать другую люминесцентную лампу, пока не научитесь разбирать ее.
  2. Непосредственно та схема, которая используется на люминесцентной лампе, для создания светодиодного устройства нам не подойдет. Ее следует разобрать.
  3. Из цоколя потребуется использовать предохранитель. Потому извлекать ее из схемы не нужно.
  4. Потребуется и сам диод. Обычно там применяют диоды марки 1N4007.
  5. Для новой схемы добавляется электролит. Подойдет практически любой, но только напряжение его должно быть минимум 50 Вольт, а емкость от 100 мкФ и выше.
  6. Следующая необходимая нам деталь исходной конструкции конденсатор. Его емкость составляет 1 мкФ, напряжение 630 Вольт.
  7. Самый главный элемент для будущей светодиодной лампы это непосредственно сами светодиоды. Можете задействовать элементы из светодиодных лент. Их разрезают на участки, содержащие по 3 диода. Для питания этого участка используется напряжение 12 Вольт. Для нашей лампы потребуется взять 4 таких отрезка. Ниже приведена схема, согласно которой выполняется сборка всех компонентов будущей лампы.
  8. Чтобы не возникало проблем с разбалтыванием светодиодов в цоколе, посадите их на любой клей. Желательно что-то из разряда супер-клея.
  9. А для кусков диодов лучше использовать каркас. Вооружитесь для этих целей любым плотным материалом, который гнется. Исключением является металла и любой проводящий ток материал. Многие мастера используют пенокартон, свернутый в трубочку. Ее диаметр должен оказаться немного меньше, чем диаметр цоколя. Пенокартонную конструкцию лучше дополнительно насадить на клей для лучшего сцепления.
  10. Грубо говоря, самодельные светодиодные лампочки, использующие питание на 220 Вольт это цоколь с основанием для кусочков светодиодной ленты. Отрезки ленты крепятся снаружи трубочки пенокартона, что образует светящуюся часть лампы. Все просто, как вы сами можете убедиться.
  11. Согласно схеме, светодиодные отрезки ленты соединяются последовательно. При этом на деле они будут находиться друг над другом. Если есть необходимость, количество уровней из отрезков ленты можно увеличить, повысив тем самым яркость лампы. Только в этом случае потребуется выбрать конденсатор с электролитом, соответствующие мощности светильника с увеличенной емкостью.
  12. Приклеивание ленты на пенокартонное основание рекомендуется с помощью жидких гвоздей. Так вы сможете подкорректировать расположение светодиодов. Супер-клей возьмется намертво. И если сделать что-то не совсем ровно, исправить это вы уже не сможете.
  13. Саму ленту не редко заливают жидкими гвоздями. Снаружи остаются только сами светодиоды. Так светильник будет выглядеть оригинальнее, а клей дополнительно сможет защитить устройство от механических нагрузок.
  14. Подобные собранные устройства на 220 Вольт могут питаться и от напряжения 40 Вольт.
  15. Если использовать напряжение 220 Вольт, каждый отрезок ленты с диодами получит напряжение 11,5 Вольт.
  16. Если же повысить его до 240 Вольт, идущее на отрезки светодиодов напряжение станет 12 Вольт.
  17. Подобные моменты позволяют понять, что сделанные лампы не будут опасаться перепадов напряжения.
  18. Собрав конструкцию согласно схеме, вы получите лампу с приличной эффективностью излучаемого света.

Есть ли у подобной схемы недостатки? Да. Но он один, хотя и существенный.

Проблема собранной схемы в том, что вы получаете электрическую открытую связь, заключенную между электрической сетью на 220 Вольт и светодиодами. Потому обращение с подобными устройствами потребует повышенного внимания. Но если соблюдать элементарные правила безопасности, проблем с эксплуатацией самодельной лампочки возникнуть не должно.

Хотя процесс самостоятельной сборки светодиодной лампы не является сложным, при отсутствии элементарных знаний в данной сфере есть минимум две причины отказаться от самостоятельных попыток собрать конструкцию:

  1. У вас просто может ничего не получиться, если не разбираться в схемах.
  2. Собранная кустарным способам лампочка может навредить всей проводке вашего дома, привести к печальным последствиям.

Если же опыт есть, хотя бы из личного интереса стоит попробовать собрать нечто подобное.

Всем мастерам привет! Сегодня хочу Вам показать несколько конструкций светодиодных ламп, которые можно сделать из отслуживших свой срок «энергосберегаек» и . Суть идеи в том, что можно дать новую жизнь старым вещам и они ещё долго будут служить на благо человеку. Схема общая для всех трёх конструкций - обычный бестрансформаторный источник питания. Подробнее о его работе можно почитать здесь.

Светодиодная лампа для ночника

Первая конструкция небольшой мощности, поэтому планируется установить её в ночник. Лампа собирается на базе четырёх трёхкристальных светодиодов SMD5050. Ток потребления 4,5 мА. Балластный конденсатор 0,1 мкФ.

Светодиодная лампа 2 ватта

Лампа на 2 ватта из пятидесяти четырёх однокристальных светодиодов SMD3528 в настольный светильник. Ток потребления 11 мА. Конденсатор 0,47 мкФ.

Лампа на 5,5 ватт из тридцати трёхкристальных светодиодов SMD5050 в прихожую. Ток её потребления 60 мА. Конденсатор 1,5 мкФ.

Схема питания LED ламп

Собирается всё очень просто, вот схема, для которой нам понадобится:

  • резистор 100 Ом * 1 Вт,
  • резистор 1 Мом * 0,25 Вт, нужен для разряда неполярного конденсатора после выключения питания,
  • любой диодный мост с рабочим напряжением не менее 400 вольт (или сборка из четырёх диодов, которые можно взять из тех же «энергосберегаек»),
  • неполярный конденсатор от 0,1 до 2,0 мкФ на напряжение не менее 275 вольт (лучше 400 вольт), он ограничивает ток подводимый к светодиодам,
  • электролитический конденсатор от 2 мкФ и предельным напряжением не менее 400 вольт (тоже можно взять из «энергосберегайки»), он сглаживает пульсации напряжения, исключая мерцание светодиодов,
  • и, конечно, любые одинаковые светодиоды.

Все светодиоды соединяются последовательно (плюс к минусу) и подключаются к схеме, соблюдая полярность. Неполярный конденсатор подбирается исходя из тока светодиодов, который можно посмотреть в даташите на данный светодиод, вот по этой таблице:

Но лучше, конечно, вставив в разрыв питания светодиодов мультиметр (на режиме 200 мА) проконтролировать ток, что бы он не превышал номинальный ток светодиодов, во избежание преждевременного выхода их из строя.

ПРЕДУПРЕЖДЕНИЕ: Данная схема не имеет гальванической развязки с сетью, поэтому необходимо соблюдать осторожность при работе, не касаться руками оголённых участков цепи, включенного в сеть прибора, во избежание удара током!

Архивы на печатные платы для ламп можете скачать по этой ссылке . Удачи Вам в творческих начинаниях и до новых встреч на страницах сайта Радиосхемы ! С Вами был Тёмыч .

Обсудить статью КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, “синий” чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. “Пиранья” – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

Ремонт своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но “вечные” устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Изготовить своими руками

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Настольная лампа на светодиодах

Лампа на 220 В. Видео

Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

Интернет